
Automation Tools
No discussion of network automation would be complete without evaluating the role that
automation tools—tools like Ansible, Chef, Puppet, Salt, Stacktorm, and Terraform—play in a
network automation context.

Traditionally, these tools have been more focused on the server automation use case. This was an
understandable focus given that most, if not all, of these tools had their origins in automating
server operating systems and managing operating system (OS) and/or application configuration. In
recent years, though, there has been a great deal of effort by a number of companies to enhance the
network automation functionality of their products. These enhancements make these products
much more useful and powerful in a network automation use case.

Aside from automated configuration management, the primary case in the beginning, with the
advent of dynamic infrastructure services offered mainly by public cloud providers, tooling has
evolved and new actors have entered the playground in order to enable the Infrastructure as Code
(IaaS) paradigm.

In this chapter, we’ll discuss how to use some major automation tools in the context of network
automation. The tools we’ll cover in this chapter are:

• Salt

• Stackstorm

Before we get into the details and examples of how to use these tools for network automation, let’s
first take a quick look at an overview of the various tools we’re going to discuss.

Reviewing Automation Tools
While all of these tools are focused on automation, each tool has its own architecture and
approaches automation in a slightly different way. This gives each tool its own set of strengths and
weaknesses. In this section, we’d like to quickly review each of the tools so that you can begin to see
how these tools might be used in their environment.

At a high level, some of the major architectural/conceptual differences between the tools include:

Configuration Management vs Infrastructure Provisioning

Infrastructure provisioning is the process used to create infrastructure - network services,
virtual machines, databases, etc. - and configuration management is the process of automating
the installation of software components and performing configuration management tasks. So,
you could understand infrastructure provisioning as a Day 0 activity, and configuration
management as a Day 1 activity. In spite of most automation tools being able to achieve both,
this chapter will help you to understand where each one shines.

Agent-based versus agentless

Some tools require an agent—a piece of software—to be running on the system or device being
managed. In a network automation use case, this could prove to be a problem, as not every
network operating system (NOS) supports running agents on a network device. In situations

1



where the NOS doesn’t support running an agent natively on the device, there are sometimes
workarounds involving a "proxy agent." Agentless tools, obviously, don’t require an agent, and
may be more applicable in network automation use cases.

Centralized versus decentralized

Agent-based architectures often also require a centralized "master server." Some agentless
products also leverage a master server, but most agentless products are decentralized.

Custom protocol versus standards-based protocol

Some tools have a custom protocol they use; this is often tied to agent-based architectures. Other
tools leverage SSH as the transport protocol. Given the ubiquity of SSH in network devices, tools
leveraging SSH as their transport protocol may be better suited to network automation use
cases.

Domain-specific language (DSL) versus standards-based data formats and general-purpose
languages

Some tools have their own DSL; to use this tool, users must create the appropriate files in that
DSL to be consumed by the automation tool. A DSL is a language purpose-built for a specific
domain (or tool). For organizations that aren’t already familiar with the DSL, this might create
an additional learning curve. Other tools leverage YAML, which is considered a general-purpose
language in this context. Remember, we discussed YAML in [dataformats].

Declarative versus Imperative

There are tools that use a declarative approach to define the final state of the infrastructure, so
independently on the definition order, the proper dependencies and tasks will be inferred and
executed to enforce the target state. On the other side, other tools use the imperative approach
where each step is a procedure to be performed, and the order defines the execution order.

Extensibility

Most of these automation tools support the ability to add or extend functionality using high-level
scripting languages. Some tools use Ruby as their language of choice for extending functionality;
others leverage Python or Go.

Push versus pull versus event-driven

Some automation tools operate in a "push" model; that is, information is pushed from one place
out to the devices or systems being managed. Others operate in a pull model, typically pulling
configuration information or instructions (often on some sort of scheduled basis). Finally, there
are also event-driven tools, which perform an action in response to some other event or trigger.

Mutable versus Immutable

Traditionally, when you needed to change the configuration of the infrastructure you simply
changed its state from the current state by applying some changes, mutating its state. This
approach is known as the mutable approach, and is how configuration management tools work;
On the other side, an immutable approach is where you need to replace/restart the infrastructure
with a new one to change its state. So, even the smallest change, such as changing the hostname
of a server, would require you to re-provision the server and start from scratch. Depending on
the focus, some tools are more suited than others for each case.

2



State Management

Configuration management tools don’t manage the lifecycle of the remote infrastructure. The
state is something you can gather at each step, but it’s not implicitly tracked. Contrarily, the tools
based on the immutable pattern, that need to decide when it’s necessary to recreate an
infrastructure component, usually keep the state of the remote infrastructure that was
provisioned by them.

With this high-level set of architectural differences in mind, let’s take a quick look at the three tools
we’re going to discuss in this chapter.

Salt

Salt can use either an agent-based architecture or an agentless architecture. In an agent-based
architecture, Salt agents communicate with the Salt master over a message bus; in the agentless
architecture, they communicate via SSH or other third-party libraries such as NAPALM (covered
later). Salt is built using Python, and can be extended with Python. Jinja provides default
templating functionality. Salt started out as a tool for remote server management, much like
Ansible, and has since gained idempotent configuration management via Salt States, which are
written in YAML. One distinction to make with Salt is that it is also a platform for event-driven
automation beyond general configuration management.

StackStorm

StackStorm takes a dramatically different approach than the other tools listed here. StackStorm
focuses solely on event-driven automation; that is, tasks are performed in response to events.
StackStorm leverages Python to build sensors that emit events or actions that perform a task.
StackStorm uses YAML in several places to provide metadata for sensors or actions, or to define
a workflow.

Now, let’s dive a bit deeper into each of the products we’re going to discuss and take a more in-
depth look at how each product can be used for network automation. We’ve arranged the in-depth
discussion of the products in alphabetical order, so we’ll start with Ansible.

Automating with Salt
Salt is a robust framework designed as an extremely fast and lightweight communication bus that
offers capabilities such as automated configuration management, cloud provisioning, network
automation, and event-driven automation, allowing you to achieve modern network operations of
your infrastructure.

Salt is very flexible, and allows you to automate a wide variety of network devices and components,
as do other tools in this chapter. Despite its somewhat perceived complexity, Salt can be set up in
minutes so you can start automating network devices.

Similar to what we did in the previous section on Ansible, our goal is to provide a jump start with
enough information so you can use Salt to start automating common network tasks immediately. In
order to do this, we’ve divided this section into five major areas:

• Understanding the Salt architecture

• Getting familiar with Salt

3



• Using Salt to collect network status

• Managing network configurations with Salt

• Executing Salt functions remotely

• Diving into Salt’s event-driven infrastructure

Understanding the Salt Architecture

From an architectural perspective, Salt is designed as a simple core with pluggable interfaces. As
you will see throughout this section, everything in Salt is pluggable and extensible, including the
creation of new device drivers to automate network devices that use different APIs. To that end,
Salt can be used to automate any type of network device.

Salt was initially developed to be an agent-based architecture, which wasn’t well suited for network
automation because, as we know, it’s not easy to load software agents on all types of network
devices. In fact, it’s very hard or even impossible on traditional network equipment. Due to the
demand for agentless automation solutions, Salt updated their architecture to offer both agentless
and agent-based solutions. Additionally, in either deployment option, Salt facilitates event-driven
network automation, which is covered later in this section.

At its core and default setup, Salt is a hub-and-spoke architecture. The hub, or central server, is
referred to as the Salt master (running software called salt-master) and manages the spokes, which
are referred to as Salt minions (running software called salt-minion), which in essence are the
nodes being automated. The Salt master has the ability to manage thousands of minions. The
communication between the master and minions is persistent and uses lightweight protocols to
enable real-time communication—this approach allows Salt to scale and manage more than 30,000
minions using a single master server. For even larger designs, it’s possible to distribute the minions
to multiple master servers, which are eventually managed by a higher-level master.

This is how Salt operates quite commonly when automating servers. To understand how Salt
operates when automating network devices, we need to review how Salt operates in an agentless
architecture.

Using Salt in an agentless architecture with salt-ssh

The Salt architecture was extended to operate in an agentless mode of operation. In this mode of
operation, the target nodes being automated do not have the salt-minion software package
installed. Rather, another package called salt-ssh is used instead and can be installed directly on
the master, or distributed on other nodes, as Salt provides a communication bus between all Salt-
related processes.

In this design, the master connects to the target device using SSH, which is why this architecture is
sometimes compared to Ansible. It’s also worth noting that when using salt-ssh, you are still able
to leverage the full functionality of Salt when automating your infrastructure.

NOTE
The salt-ssh subsystem is just another process used within the Salt architecture
and can be installed on the master or another system.

Even the agentless mode of operation with salt-ssh, however, it hasn’t particularly helped yet with

4



automating network devices due to various transport types, APIs, and network operating systems.
This is largely due to the lack of SSH-based integrations that have been built thus far for Salt.

This leads us to the next option that is most applicable to automating network devices, which is
using Salt proxy minions.

Using Salt in an agentless architecture with proxy minions

Another approach Salt uses for agentless automation uses the concept of a Salt proxy minion. A
proxy minion is a superset of the minion, thus offering all the features of the regular minions. For
all intents and purposes, it is a virtual minion. This virtual minion is not installed on the devices
you are automating—they simply proxy access to the devices you are automating. Proxy minions
are extensible, offering you the ability to create (or choose) the preferred communication channel
from a given proxy minion to the target devices being automated. This is how network automation
is performed today with Salt.

NOTE

A device managed, or minion, has a proxy process associated with it on the proxy
minion, each consuming about 40 MB RAM. Using the proxy architecture, each
proxy minion is capable of managing 100 devices from a proxy machine having
only 4 GB RAM available. These characteristics make the proxy minion a solid
choice for network automation. The proxy processes are controlled by the master,
and very often, they run on the same physical server, but can also be placed in a
distributed architecture, improving Salt’s scaling capabilities for managing network
devices. For example, Salt can automate a network consisting of 10,000 nodes by
distributing the proxy minions on 10 machines, with each server running 1,000
proxy minion processes, thus managing 1,000 nodes each.

Automating network devices with Salt

Salt supports network automation through the use proxy minions. Some proxy minions exist
specifically for networking. They include:

Netmiko

This natively offers multivendor network automation using Netmiko open source Python library,
which we cover in [apis].

NAPALM

Similar to Netmiko, but with the extra functionalities implemented by Napalm library, also
covered in [napalm].

Cisco Network Services Orchestrator (NSO)

A commercial solution from Cisco that offers multivendor model-driven network automation
primarily using NETCONF.

Juniper

Used to manage Juniper Junos devices and developed by Juniper.

5



Cisco NX-OS

Used to manage Cisco NXOS devices and developed by SaltStack.

For all of our examples going forward in this chapter, we’re going to be strictly focused on using the
NAPALM proxy minion to interact with various devices, including Cisco IOS, Cisco NXOS, Arista
EOS, and Juniper Junos devices. This was our choice as it’s open source, multivendor, and actively
being developed, and it offers a structured output for getters.

NOTE
Each one of these modules has a different module identifier, and several functions.
For example, you could run a cli command using Netmiko (netmiko.send_command),
Napalm (net.cli) or Juniper (junos.cli).

Remember, we also used the devices and topology shown in Network topology diagram (repeated
from [ansible-network-topology]) for the examples within this section (in addition to the Ansible
section).

6



Figure 1. Network topology diagram

NOTE
Again, Salt is very extensible and custom proxy minions can be written for different
devices that have unique APIs or legacy interfaces, such as SNMP or Telnet.

Getting Familiar with Salt

There are many terms you should be aware of in order to start using Salt. In order to understand
and use the system, you must have an idea of what these concepts are and how they fit into the
overall Salt framework. We’ll walk through a few of them (pillars, top file, grains, states). First, we’ll
look at the SLS file format.

7



Understanding the SLS file format

Throughout this book, you’ve learned about Jinja templates and YAML files. In both cases, Jinja is
just one type of templating language and YAML is just one way to structure data in a very human-
readable format. Imagine using a single file that understands Jinja (and other templating
languages) and YAML (and other data formats) in order to create different sets of data (the process
of inserting data into the template). This is exactly what SLS files are.

SLS is a Salt-specific file format, and it stands for SaLt State. It is a mixture of data representation
and templating languages that can be used within the same file.

By default, an SLS file is YAML + Jinja. However, due to the flexibility of Salt and SLS, it can be easily
switched to a different combination. This is an example of Salt’s pluggability—you are not limited
to Jinja and YAML only, but you’re able to choose from a variety of options. For example, for data
representation you can pick one of the following: YAML, YAMLEX, JSON, JSON5, HJSON, or even
pure Python, and for templating, you can pick one of the following: Jinja, Mako, Genshi, Cheetah,
Wempy, or, again, pure Python. The list of options can also be extended based on your
requirements and preferences.

One case for supporting different types of data representations and templating engines is that it
eases migrations from other tools. For example, if you had an internal (or custom) tool using Mako
templates, another Python-based templating engine, you could easily use them with Salt—not being
forced to use Jinja, as an example.

YAML SLS file is a very basic SLS file that can be written as a pure YAML data file:

YAML SLS file

ntp_peers:
  - 10.10.10.1
  - 10.10.10.2
  - 10.10.10.3

You can add a Jinja for loop inside the same file to make it more dynamic:

ntp_peers:
  {%- for peer_id in range(1, 4) %}
  - 10.10.10.{{ peer_id }}
  {%- endfor %}

Showing the power of using SLS data files and other data and template types, the following is an
example of using an HJSON data format with a Mako template.

#!hjson|mako
ntp_peers: [
  % for peer_id in range(1, 4):
  ${peer_id},
  % endfor

8



]

These three examples represent exactly the same data—a list of three NTP peers. The last one is a
combination of HJSON and Mako—note the shebang at the top of the file specifying this. HJSON is a
syntax extension to JSON, making it potentially more human-readable and less error-prone.

As stated earlier, you can also create SLS data files in pure Python. Here is another example that
represents the same data:

def run():
    return [
      f'10.10.10.{peer_id}' for peer_id in range(1, 4)
    ]

While all of these examples are SLS files, they are data files. They contain data that we’ll eventually
want to use to perform network automation tasks such as creating configuration files and
configuring devices.

Please note that all of the SLS files noted here would be saved with a .sls extension.

Next we’ll take a look at what pillars are and how they map back to SLS data files.

Understanding pillars

A pillar is a data resource that can either be a file that is an SLS file or data pulled from an external
service such as a CMDB or another network management platform.

NOTE
When working with pillar files, keep in mind that the Salt master configuration file,
which we cover in the next section, needs to have the proper paths defined for
where you will store your pillars.

Within pillar files, you store all data required to manage network devices. This includes any
common information such as authentication credentials, but also includes the actual configuration
data for anything you wish to configure on the device, from interface configuration and protocols
configuration to the BGP or NTP configuration.

Pillar file using SLS format is an example pillar file using the SLS file format:

Example 1. Pillar file using SLS format

---
proxy:
  proxytype: napalm
  driver: ios
  host: csr1
  username: ntc
  password: ntc123
hostname: csr1

9



'openconfig-bgp':
  bgp:
    global:
      config:
        as: 65001
        router_id: 172.17.17.1

NOTE
For our deployment, this pillar is added to the Salt master. It is then distributed to
all proxy minions, and in our case, we only have one proxy minion that is installed
directly on the master server.

In the preceding pillar file, there are three keys defined. The first is called proxy, which is a special
Salt keyword that requires key-value pairs that map to the specific proxy minion being used. The
other keys, hostname and openconfig-bgp, are arbitrary user-defined keys that we’re defining as they
contain data values we want to configure and send to the network device.

In our example, this pillar was saved as /srv/pillar/csr1_pillar.sls. This particular pillar is device-
specific, but as we’ll see later in this section, they can also be broader for storing data used across a
set of devices.

NOTE
To avoid exposing sensitive data, you can encrypt the data using GPG and Salt will
decrypt it during runtime, or you can store it in a secured external pillar (for
example, Hashicorp Vault).

For large deployments, you may want to retrieve data from some external system that already
exists internal to your organization rather than manage large quantities of pillar files. For these use
cases, it’s possible to have external pillars. External pillars can be any external services including,
but not limited to, databases, Git repositories, HTTP APIs, or even Excel files. The complete
reference can be found at Salt external pillars documentation.

A common use case for network automation is fetching the data from an IP address management
(IPAM) solution. Considering that most IPAM solutions expose data through an HTTP-based API, the
next three lines could also be added to a pillar file:

ext_pillar:
  - http_yaml:
      url: https://my-ipam.org/api/<node>

In this case, all data returned from the IPAM can be data leveraged in some fashion when executing
a Salt task such as rendering data into a template that’ll be used to generate configurations.

Understanding the top file

We’re now aware of the SLS file format and pillar data files that leverage the SLS file format.
Another type of file in Salt that uses the SLS file format is called the top file.

The top file, often referred to simply as the top, defines the mapping between a minion or groups of

10

https://docs.saltstack.io/en/latest/ref/renderers/all/salt.renderers.gpg.html
https://docs.saltstack.io/en/latest/ref/renderers/all/salt.renderers.gpg.html
https://docs.saltproject.io/en/latest/topics/development/modules/external_pillars.html


minions and the data (through the use of pillars) that should be applied to them. To a certain extent,
you can look at the top file as being similar to an Ansible inventory file, which we covered in the
last section, but there are in fact many differences that you’ll see.

Within the top file, you have the ability to specify which pillar(s) are assigned to which device(s).
When new devices are added to Salt management, they are identified by a unique minion ID—this
ID is assigned by you, the user. You can then reference this ID and map specific pillars (data) to the
new device, or create broader groups based on device type, site, or region.

NOTE The top file is commonly defined as top.sls. Our file was saved as /srv/pillar/top.sls.

Basic Salt Top File is a basic example of a top file that uses exact matches based on the minion ID
and matches each device to a pillar data file.

Example 2. Basic Salt Top File

---
base:
  csr1:  # minion id
    - csr1_pillar  # pillar mapped to csr1
  vmx1:
    - vmx1_pillar
  nxos-spine1:
    - nxos_spine1_pillar
  eos-spine1:
    - eos_spine1_pillar

In this basic example, the minion with the ID nxos-spine1 uses the nxos_spine1_pillar.sls pillar.

NOTE

Take notice of the base keyword as the root key in the top file. In Salt, base is a
reserved keyword indicating that this is the default environment being managed by
this Salt system. Thus, as you can imagine, you can manage different environments
(prod, test, DR, QA) with Salt and reference them using different keys in your top
file. We are using the default, or "base," environment for our examples.

As we alluded to, you may want to map a single pillar data file that contains certain configuration
inputs for a certain device type to more than one device. In this case, you don’t use the minion ID.
You can use more advanced methods such as shell-like globbing and regular expressions, or even
use device characteristics including grains, which we cover in an upcoming section, or pillar data.

Let’s take a look at a few more examples of more realistic and advanced top files that leverage
shell-like globbing and regular expressions.

The following example maps pillars to devices using characteristics about a device, called Salt
grains, including vendor and OS version:

---

11



base:
  'G@vendor:juniper':
    - junos
  'G@os:ios and G@version:16*'
    - ios_16
  'E@(.*)-spine(\d)':
    - spine

In this example, the junos.sls pillar is loaded only for devices that are identified as manufactured by
Juniper using the vendor characteristic. Again, these characteristics are called grains, which we
cover in the next section. For now, you can see the G@, which indicates grains are being used.
Similarly, the ios_16.sls pillar is mapped and loaded for all devices that are IOS and are version
16.X. Finally, you can also see in the last example, the spine pillar is loaded for any spine device
(e.g., nxos-spine1 or eos-spine2). In this example, regular expressions are being used—note the E@
(expression). The minion ID must contain any characters (.*), followed by -spine, then followed by
a single digit (\d) to match the spine devices in our topology.

You can also have default pillars that you want to apply to all devices. For example, to load a pillar,
which we defined previously, called ntp_peers.sls, you can add the following to the top file:

  '*':
    - ntp_peers

In this case, you can ensure that the entire network uses the same set of NTP peers.

You can also define custom groups based on your own business logic. To map a custom group of
devices identified by a user-defined name (and a little more analogous to what’s defined with
Ansible), we need to use the nodegroups key in the Salt master configuration file—ours is stored at
/etc/salt/master:

---
nodegroups:
  amers:
    - 'csr*'
    - 'or'
    - 'nxos-spine*'
  emea:
    - 'vmx* and G@os:junos'
    - 'or'
    - 'eos-spine*'

NOTE
Don’t worry, we cover the Salt master configuration file in more detail in an
upcoming section too.

There are now groups defined called amers and emea, such that the amers groups all devices whose
minion ID starts with csr or nxos-spine, while emea groups devices whose ID starts with eos-spine, or
running Junos and their ID starts with vmx.

12



Once these groups are defined in the master configuration file, they can be referenced in the top
file. In the next example, pay attention to the two new keys called N@emea and N@amers. They are
referencing the node groups (N@) that were just defined in the master configuration file.

base:
  'G@vendor:juniper':
    - junos
  'G@os:ios and G@version:16*'
    - ios_16
  'E@(.*)-spine(\d)':
    - spine
  'N@emea':
    - communities_emea
  'N@amers':
    - communities_amers

This assumes two pillars for BGP communities were created, communities_amers.sls and
communities_emea.sls.

TIP

Don’t forget that the top file is still SLS, thus Jinja + YAML by default, which can be
leveraged to generate dynamic mappings. For example, if we have a longer list of
regions, the last example could be written like this:

base:
  'G@vendor:juniper':
    - junos
  'G@os:ios and G@version:16*'
    - ios_16
  'E@(.*)-spine(\d)':
    - spine
  {% for region in ['emea', 'amers', 'apac'] -%}
  'N@{{ region }}':
    - communities_{{ region }}
  {% endfor -%}

While our focus is on getting started with Salt, you should be aware that you can integrate Salt to
use external systems that offer more dynamic tops. Rather than a top file, you’d use an external
service. This is helpful if you already have inventory and groupings in some other internal system
or tool.

Understanding grains

We’ve already alluded to grains, but now we’ll cover them in a little more detail. Remember that
we’ve already defined pillars in SLS files. Thus, pillars are data provided by the user. In contrast,
grains represent data gathered by Salt.

Grains are information that Salt collects about a given device such as device vendor, model, serial

13



number, OS version, kernel, DNS, disks, GPUs, and uptime. You don’t need to do anything with this
data, but you should be aware that this data exists because it has many uses. For example, we’ve
already shown how you can leverage grains in top files. You can also use this data in templates,
conditional statements, and reports.

NOTE

Grains is a Salt-specific term, but in other tools, this type of data is often referred to
as facts. However, please note that they are not quite equivalent—grains are purely
static data and they are cached. Dynamic details (such as interfaces details, BGP
configuration, LLDP neighbors) is retrieved on runtime, via Salt execution modules.

Additionally, you have the ability to create your own grains either by using custom Salt integrations
in the form of execution modules or by statically defining them in files. One option is to statically
store grains data in the proxy minion configuration file as shown here:

grains:
  role: spine
  production: true

TIP
Before adding a new grain, it is recommended that you evaluate how dynamic the
information is. Grains are more suitable for data very unlikely to change; otherwise,
storing the data in a pillar is the preferred option.

Understanding states, state SLS files, and state modules

Salt States are modules used to manage, maintain, and enforce configuration. They are a
declarative or imperative representation of a system configuration. Having the source of truth in
the pillar, the state compares it with the current configuration, then decides what is required to be
removed and what has to be added. Given modern network devices able to apply atomic
configurations, it is even easier. In that case, we only need to generate the expected configuration
and let the device compute the difference.

In cases where the device does not have such capabilities, or it’s more optimal to determine the
difference ourselves, we need one additional step, as we illustrate in Creating Jinja network
configuration templates.

Understanding the state SLS

The state SLS is a descriptor that defines which states will be executed when the state is applied.
Each state is identified by a unique state_name that you define, which invokes a state function (built
into Salt) passing a list of arguments.

<state_name>:
  <state_function>:
    - list of state arguments

Remember the following when you start working with state SLS files.

14



• state_name is an arbitrary name assigned.

• state_function is the state function we want to execute.

NOTE
Do not conflate the state SLS with the state module: the latter is a Python module
that processes the arguments, executes the code, and produces the result, while the
state SLS invokes one or more state functions.

After the introduction of the basic Salt concepts, you are ready to start playing with Salt.

Using Salt to Collect Network Status

In this subsection, we will bring a local Salt environment to live, with all the necessary
configuration, to collect data from network devices. The first step is the master Salt configuration
file.

Updating the master configuration file

We’ve made reference to various files that are used within Salt, such as pillars and templates. These
types of files need to be stored in particular locations on your master server. You define these
locations within the master configuration file.

The master configuration file is a YAML file that is preconfigured with default options as soon as
Salt is installed. The default path for the master configuration file is either /etc/salt/master or
/srv/master.

The list of options that can be configured in the master configuration file is long, but two of the
most important are configuring file_roots and pillar_roots. These are keys in the config file—
remember the file is YAML based.

Within file_roots you specify the paths local to the master server, where different files are stored,
such as templates, states, pillars, and extension modules. The structure used is also flexible enough
to allow you to have different environments on the same machine (e.g., production, test, and DR).

Here is a snippet from a configuration file that configures the file_roots:

file_roots:
  base:
    - /srv/salt
    - /etc/salt/templates
    - /etc/salt/states
    - /etc/salt/reactors

Note base, the special keyword in Salt we mentioned earlier. When used, it designates the
respective paths that map to the default environment (since you can define multiple environments
each as a different key). For example, if you wanted to define an environment called dev used for
development only, the structure would be the following:

file_roots:

15



  dev:
    - /home/ntc/pillar
    - /home/ntc/states

The structure of pillar_roots is very similar to that of the file_roots, pointing to the directory
where the pillar files are stored:

pillar_roots:
  base:
    - /srv/pillar

Similar to using environments for file_roots, you could subsequently update pillar_roots to
support a development environment too.

NOTE
It is not required to define templates within a flat directory such as /srv/template.
There are designs where the templates are actually stored under each state,
grouped more logically by how they’re used and what devices are using them.

Once you have a base configuration on the master, the next step will be to perform similar tasks on
the proxy minion, specifically when automating network devices.

Updating the minion and proxy minion configuration file

The minion has its own configuration file. The default paths supported are /etc/salt/minion and
/srv/minion. As the proxy minion is a superset of the regular minion, it inherits all the options
(YAML keys) supported by the minion configuration.

The proxy configuration file is stored either at /etc/salt/proxy or /srv/proxy (depending on the OS).

The most relevant configuration parameter is the master server location. If it can’t be resolved, the
minion process will fail to start.

Salt dev environment configuration

We already mentioned the distributed nature of Salt’s architecture. However, you can also run all
the components in one server. In Salt local development environment, you can observe the
different processes running: the Salt Master, one minion process to manage the local server, and
the multiple proxy minions, to connect to the network devices.

16



Figure 2. Salt local development environment

When you have installed salt-master and salt-minion on your computer, you can adjust the
configuration files introduced above.

In our local environment, we updated the server minion configuration file (/etc/salt/minion) and
the proxy one (/etc/salt/proxy), to point to master, via localhost (master: localhost)

Then, we are ready to start the Salt processes, using whatever service management utility you
prefer.

$ sudo systemctl start salt-master
$ sudo systemctl start salt-minion

NOTE

Remember to use the proper service manager for your OS platform. This example,
with systemctl, works for Systemd based platforms (newer Debian, openSUSE,
Fedora). On Ubuntu and older Fedora/RHEL using Upstart, you would use the
service salt-master start syntax.

Like other services, Salt keeps updating logs in /var/log/salt/ directory. When something is not
working as expected, checking the service’s logs can give the right information to debug and fix the
issue. You have one file for each service:

$ tree /var/log/salt/
/var/log/salt/
├── key
├── master
├── minion
└── proxy

Hopefully, right now, we have the master salt and the local server minion running. Now, you can
start using the salt commands to verify the status of the minion.

17



Verifying minions are up with the test module

In any size deployment, verifying minions are up and functional is a critical step in
troubleshooting. You can accomplish this using the test module, and more specifically the test.ping
function.

$ sudo salt "*" test.ping
No minions matched the target. No command was sent, no jid was assigned.
ERROR: No return received

Why we can’t reach the local minion if it is running? Salt implements a key acceptance mechanism,
and, by default, the keys are not accepted. We can check the status of the keys with salt-key --list
-all.

$ sudo salt-key --list-all
Accepted Keys:
Denied Keys:
Unaccepted Keys:
ntc
Rejected Keys:

We can spot that the local minion key is not accepted by Salt master. We need to explicitly approved
them to start communicating with the minion. The same mechanism also applies to the proxy-
minions.

Example 3. Approve Salt Keys

$ sudo salt-key --accept-all
The following keys are going to be accepted:
Unaccepted Keys:
ntc
Proceed? [n/Y] y
Key for minion ntc accepted.

Once the key is accepted, if we rerun the test.ping again, we verify that it is reachable now.

$ sudo salt "*" test.ping
ntc:
    True

test.ping is a simple function that only returns True. It is used to check if the minion is up and
accepted by the master. Note: this is not an ICMP ping.

18



Install Napalm in the local minion

We have already introduced Salt States to manage the configuration state. In our case, we decided
to use Napalm as the proxy type to interact with the network devices. However, as you may guess, it
requires Napalm library to be installed on the minion server hosting the proxy-minions. In our
local development environment, this happens in the same server, where Salt Master and Proxy run
alonside.

To make installation processes easier, the community has created pre-written Salt States, called
formulas. To install Napalm, there is already a formula available, napalm-install-formula.

Following the instructions, we clone the repository formula to /srv/formulas/napalm-install-
formula and, then, update the master configuration file (under file_roots) to take this folder into
account when looking for Salt States. Remember to restart the process to activate the new
configuration.

$ cat /etc/salt/master
file_roots:
  base:
      - /srv/salt
      - /srv/formulas/napalm-install-formula

Then, you have to create the sls files to enforce the installation of this formula into the local
minion. You define the state, pointing to the formula, and the pillar information to be used by the
state, with the desired Napalm version. These are are the all the files related to the Napalm setup:

$ cat /srv/salt/top.sls
base:
  ntc:
    - napalm_install

$ cat /srv/pillar/top.sls
base:
  ntc:
    - napalm

$ cat /srv/pillar/napalm.sls
napalm:
  version: 3.4.0

In the next section, once Napalm is installed in the minion, we’ll look at using execution modules to
view grains for one or more devices using the salt command.

Start Proxy-Minions

Now, it’s time to start our proxy-minions, mapping to each one of the routers, as described in Basic
Salt Top File and configure each corresponding pillar with the format from Pillar file using SLS
format.

19

https://github.com/saltstack-formulas/napalm-install-formula


For each router, you start a proxy-minion process, defining its proxyid. This proxyid should match
the key used in the top.sls files, to relate to the corresponding pillars and states.

$ sudo salt-proxy --proxyid=csr1 -d
$ sudo salt-proxy --proxyid=vmx1 -d

Like in Verifying minions are up with the test module, you can verify their reachability with
test.ping, bub remember that you must approve its connection keys first, as we did in Approve Salt
Keys.

Using execution modules

Salt uses execution modules, more commonly referred to simply as modules, in order to retrieve
either data that’s stored under Salt management or data directly from the device.

NOTE
We only review a handful of modules in this book. For a complete list of modules,
please view them at Salt modules documentation.

First, we’ll review common modules and associated functions that are used to view both grains and
pillar data. We’ll show this using the salt command, but as you’ll see later, you can also leverage
these modules directly within SLS files that are used for templates, pillars, and other software
artifacts within Salt.

In the first example, we’ll simply print the grain called model for csr1 using the get function within
the grains execution module.

$ sudo salt csr1 grains.get model
csr1:
    CSR1000V

To see the complete list of grains available for a minion, you’d use grains.items instead, without
passing any arguments.

You can also access specific data from a pillar while using the salt CLI command. In the next
example, we check to see what the ntp_peers value is specifically for csr1. Similar to grains,
pillar.get returns the value of specific pillar data.

$ sudo salt csr1 pillar.get ntp_peers
csr1:
    - 10.10.10.1
    - 10.10.10.2
    - 10.10.10.3

To retrieve a value from a more complex data structure in a pillar file, you use the : delimiter to
navigate through key-value hierarchies. Using the previously defined structure from csr1_pillar.sls
and shown here again, you can print just the BGP ASN for csr1:

20

https://docs.saltproject.io/en/latest/py-modindex.html


# sample object in a pillar data file: csr1_pillar.sls
'openconfig-bgp':
  bgp:
    global:
      config:
        as: 65001
        router_id: 172.17.17.1

$ sudo salt csr1 pillar.get openconfig-bgp:bgp:global:config:as
csr1:
    65001

TIP

As you start using the salt command, be aware of the general syntax:

$ sudo salt [options] <target> <function> [arguments]

In this case, target is used to specify the minions that are going to be automated with
the arguments specified.

You can use salt --help for added assistance as you continue to use salt. We’ll
continue showing various examples using the salt command throughout this section.

Collecting device data using network modules

The previous examples used the grains and pillar modules. Those modules were simply accessing
data that was predefined or cached data that was previously collected.

Salt also has over a dozen modules for retrieving feature-specific data from network devices
including, but not limited to, NTP configuration, NTP peers, BGP, routes, SNMP, and users. There are
even more advanced modules for extracting data from devices and representing it in YAML such
that it maps to YANG models.

NOTE
Remember all of this functionality, such as retrieving grains or configuration data
from devices, while exposed to Salt, is occurring through the use of the NAPALM
Python library.

The following are a few examples using modules on the CLI.

In Collect data using network modules, we retrieve the ARP table from the device with a minion ID
of csr1.

Example 4. Collect data using network modules

$ sudo salt csr1 net.arp
csr1:

21



    ----------
    comment:
    out:
        |_
          ----------
          age:
              55.0
          interface:
              GigabitEthernet1
          ip:
              10.0.0.2
          mac:
              52:55:0A:00:00:02
# output trimmed

In More examples collecting data from network devices, you can see other examples where specific
network functions are being executed within an execution module. In these examples, net, ntp, and
bgp are the execution modules and what follows is the function inside the module (e.g.,
bgp.neighbors and bgp.config).

Example 5. More examples collecting data from network devices

# Retrieve the MAC address table from the device with a minion ID of `vmx1`
$ sudo salt vmx1 net.mac

# Retrieve NTP statistics from the device with a minion ID of `vmx1`
$ sudo salt vmx1 ntp.stats

# Retrieve the active BGP neighbors from the device with a minion ID of `vmx1`
$ sudo salt vmx1 bgp.neighbors

# Retrieve the BGP configuration from the device with a minion ID of `eos-spine1`
$ sudo salt eos-spine1 bgp.config

Understanding targeting and compound matching

In the previous examples, we were automating only a single device. Salt offers the ability to use
targeting to automate more than one device. Targeting can be very simple, but can become as
complex as required by the business logic. Let’s look at a few examples.

Using the -L command line flag, you can explicitly define a list of devices you want to target:

$ sudo salt -L csr1,vmx1 net.mac

Using what’s called globbing, you can use expressions such as a wildcard:

22



$ sudo salt 'vmx*' ntp.stats

Additionally, you can use grain data with the -G flag and target devices based on grains.

$ sudo salt -G 'os:junos' bgp.neighbors

You can even match devices using their static pillar data using the -I flag:

$ sudo salt -I 'bgp:as_number:65512' bgp.config

For the previous example to work, it would require the BGP configuration data to have the
following equivalent YAML structure in a pillar file:

bgp:
  as_number: 65512

Now that you know how to automate a single minion or a group of minions based on a variety of
options, it’s worth understanding compound matching. Compound matching allows you to perform
conditional-like logic, adding more flexibility to target the devices being automated.

In order to retrieve the BGP configuration from minions whose IDs start with vmx, running 18.2x,
and have a predefined ASN of 65512 in the pillar file, you can use the following statement:

$ sudo salt -C 'vmx* and G@version:18.2* and I@bgp:as_number:65512' bgp.config

When using compound matching, you use the -C flag and then reference the other flags we
previously covered using the flag and the @ symbol.

As compound matchers can get very complex at times, they can be defined in the master config file
under nodegroups:

nodegroups:
  vmx-18-bgp: 'vmx* and G@os:junos and G@version:18.2* and I@bgp:as_number:65512'

You can then access and reference the node group on the CLI:

$ sudo salt -N vmx-18-bgp bgp.config

Viewing module and function docstrings

When just getting started with Salt, you may not be aware of how a particular function within a
module works. In this case, you use the sys.doc option in the command being executed. sys.doc

23



without any arguments returns the documentation for all modules.

Optionally, you can specify to return the docstring for a particular module or execution function:

$ sudo salt vmx1 sys.doc test.ping
test.ping:

    Used to make sure the minion is up and responding. Not an ICMP ping.

    Returns `True`.

    CLI Example:

        salt '*' test.ping

Understanding different output options for modules

By default, the structure of a module's output is displayed on the command line, in a
human-readable and colorful format called `nested`:

$ sudo salt vmx1 ntp.peers
vmx1:
    ----------
    comment:
    out:
        - 1.2.3.4
        - 5.6.7.8
    result:
        True

However, the salt command permits a significant number of options. One of the most common is
--out, which returns the output in the format specified. Using this option, we can elect to return the
structure in YAML, in JSON, or even as a table:

$ sudo salt --out=json vmx1 net.arp
{
    "vmx1": {
        "comment": "",
        "result": true,
        "out": [
            {
                "interface": "fxp0.0",
                "ip": "10.0.0.2",
                "mac": "2C:C2:60:FF:00:5F",
                "age": 1424.0
            },
            {

24



                "interface": "em1.0",
                "ip": "128.0.0.16",
                "mac": "2C:C2:60:64:28:01",
                "age": null
            }
        ]
    }
}

Next is an example of outputting the data using a table format:

$ sudo salt --out=table vmx1 net.arp
vmx1:
----------
    comment:
    ----------
    out:
    ----------
        ------------------------------------------------------
        |  Age  | Interface |     Ip     |        Mac        |
        ------------------------------------------------------
        | 991.0 |   fxp0.0  |  10.0.0.2  | 2C:C2:60:FF:00:5F |
        ------------------------------------------------------
        |  None |   em1.0   | 128.0.0.16 | 2C:C2:60:64:28:01 |
        ------------------------------------------------------
    result:
    ----------

There are several output types available and many others can be added. Although the --out option
is for CLI usage, we are able to take the output in the format displayed on the screen and reuse it as-
is in different services, including passing data to an external service.

While data can be passed to an external service, it can also be returned to an external service,
which we cover next.

Sending data to external services

As you’ve seen, data is easily returned and viewed on the command line. However, you may also
need to send this data to an external service. Using the --return CLI option, you define where to
send the data, but you need to specify the name of a returner.

The list of available returners is diverse, some of the most usual being Slack, Syslog, Django, Redis,
SMS, SMTP, Kafka, MySQL and Postgres.

For example, we can configure the Slack returner by adding in the (proxy) minion or master
configuration:

slack.channel: Network Automation
slack.api_key: d4735e3a265e16eee03f59718b

25



slack.username: salt

At this point, we can execute a command with the --return flag and the typical stdout is sent to
Slack.

Here is an example:

$ sudo salt --return slack test.ping

NOTE
The output is still displayed on the command line, in the shape we want, while it is
also forwarded to the selected service. If you do not want to return anything at all
on the CLI, you can use the --out=quiet option.

While the outputters make sense only on the command line, returners can be used in other
applications. For example, using the Salt scheduler, we can execute a job at specific intervals and its
output is then sent to the designated returner. Similarly, when a task is performed as a result of a
trigger, we may need to see its result from a monitoring tool.

State modules for network automation

For network automation needs, there are several state modules available, including
net_napalm_yang, netconfig, netacl, netntp, netsnmp, or netusers.

One of the most flexible is netconfig, which manages and deploys configurations on network
devices using arbitrary user-defined templates. Our focus is on netconfig.

In this example, we use the netconfig.managed state function:

ntp_peers_example:
  netconfig.managed:
    - template_name: salt://ntp_template.j2
    - debug: true

Here is an overview of the various uses of the word state within the previous file:

• The file is a state SLS file.

• ntp_peers_example is a state name that we defined.

• netconfig is a built-in state module that manages configurations.

• managed or netconfig.managed is a built-in function that’s part of the netconfig state module that
specifically deploys the configurations onto network devices.

Additionally, remember that ntp_template.j2 is a template that can leverage SLS functionality, and
data inserted into the template could come from pillar data files that are SLS files. The main point is
to remember that SLS is a file type.

Next, we’ll look at a few workflows that build and deploy network configurations.

26



Managing Network Configurations with Salt

We’ve seen how flexible SLS files are and what can be done with the salt command, but another
unique capability of Salt is that any function available on the CLI can also be executed inside SLS
files, including templates.

We’re now going to walk through the process of auto-generating configurations through the use of
templates.

Accessing data within templates

There are also a number of built-in identifiers (almost like variables) available, such as grains,
pillar, opts (the dictionary of configuration options) or env (provides the environment variables).
These can also be used directly inside a template similar to how they’re used on the CLI (e.g.,
grains.get os). This adds value as you start templating out network configurations, as you’ll see in
the next few examples.

NOTE

Salt offers a nice way to manage sensitive data and avoid repeating the same
configuration in multiple places. It is called the SDB interface, which is designed to
store and retrieve data that, unlike pillars and grains, is not necessarily minion-
specific, through small database queries (hence the name SDB) using a compact URI
sdb://<profile>/<args>. There are a number of SDB modules available, including:
SQLite3, CouchDB, Consul, Keyring, Memcached, REST API calls, Hashicorp Vault,
Redis or environment variables.

Execution functions can be accessed with the salt reserved keyword. While on the CLI we just
execute ntp.peers; inside the template we only need to prepend salt:

{%- set configured_peers = salt.ntp.peers()['out'] -%}

configured_peers is a variable created in the template via the set statement in Jinja.
configured_peers is a Jinja variable and when this template is executed, it’ll be assigned the list of
active NTP peers configured on the device through the ntp execution module.

In Salt, as in many other tools, it’s good practice to move the complexity of the Jinja templates into
the actual functions such that the data or task can be eventually reused in other applications. This
provides major benefits: making templates more readable, opening the gate to reusability, and
providing a great way to reintroduce data into the system.

NOTE
Custom execution modules take just a short time to write in Python and are
automatically distributed to minions (or proxy minions). They can then be used
within templates, other SLS files, or from the command line.

When using the grains, pillar, and opts keywords within a template, you can define high-level
business logic and design templates in a vendor-agnostic manner, in such a way that the same
template can be executed against different platforms, and it is intelligent enough to identify what
configuration changes to load.

27



Creating Jinja network configuration templates

For example, you can define the Salt template to generate the configuration for the NTP peers, using
the input data from the pillar defined earlier, in YAML SLS file, with a Jinja template that looks like
NTP Jinja configuration template.

Example 6. NTP Jinja configuration template

{%- if grains.os == 'junos' %}
system {
 replace:
 ntp {
   {%- for peer in pillar.ntp_peers %}
   peer {{ peer }};
   {%- endfor %}
 }
}
{%- elif grains.vendor | lower == 'cisco' %}
no ntp
  {%- for peer in pillar.ntp_peers %}
ntp peer {{ peer }}
  {%- endfor %}
{%- endif %}

The unique piece here is the use of the pillar keyword directly in the template. This allows you to
access data defined in the pillar files.

If your goal was to ensure that a specific feature is configured exactly as desired in a declarative
manner (with no extra peers still on the device), you can perform a replace operation on the device.
On Junos, you do this using the replace keyword, while with other more traditional operating
systems, command negations ("no" commands) are required.

NOTE
The replace keyword here for Junos maps back to the NETCONF replace operation
that we covered in [apis] and allows you to replace a full hierarchy within a
configuration.

In this example, we saved the template as ntp_template.j2 within the /srv/templates directory,
included in the file_roots list, in the master configuration file.

We can then reference this template as salt://ntp_template.j2 when using it from the command
line or from within Salt state files.

At this point, we’ve simply built out the Jinja template—we haven’t yet rendered it with data, or
created a configuration file.

To highlight what’s possible using of the salt directive inside the template, we’re able to determine
the NTP peers to be added or removed based on retrieving in real time the existing peers using the
statement salt.ntp.peers.

28



In NTP Jinja configuration template, removing uncompliant peers, the template creates the
configuration for both IOS and Junos for configuring NTP peers. This template has the logic
required to ensure only the peers defined in the pillar end up configured on the device, meaning
any unwanted peers will be purged from the device (when the configuration is deployed).

Example 7. NTP Jinja configuration template, removing uncompliant peers

{%- set configured_peers = salt.ntp.peers()['out'] -%}
{%- set add_peers = pillar.ntp_peers | difference(configured_peers) -%}
{%- set rem_peers = configured_peers | difference(pillar.ntp_peers) -%}
{%- if grains.os == 'junos' -%}
 {%- for peer in rem_peers -%}
delete system ntp peer {{ peer }}
 {% endfor -%}
 {%- for peer in add_peers -%}
set system ntp peer {{ peer }}
 {% endfor -%}
{%- elif grains.vendor | lower == 'cisco' %}
 {%- for peer in rem_peers -%}
no ntp peer {{ peer }}
 {% endfor -%}
 {%- for peer in add_peers -%}
ntp peer {{ peer }}
 {% endfor -%}
{%- endif -%}

For devices such as Juniper that provide support for partial configuration replace capabilities, this
is quite a nice solution. For others, it could seem tedious due to the logic required to determine
which "no" commands are needed to purge the un-wanted peers. However, this is the best way to
handle those scenarios where there isn’t a native way for partial configuration replace operations.

Deploying network configurations with netconfig

Next, we need to define a state that can be executed to insert the data from the NTP pillar(s) into the
NTP template to generate the required commands that’ll send commands to the devices.

Here is where we’ll use the netconf.managed state function. This renders the desired configuration
and deploys the commands to the network device.

ntp_peers_example:
  netconfig.managed:
    - template_name: salt://ntp_template.j2
    - debug: true

This SLS state file was saved under one of the file_roots paths (e.g., /srv/salt/) as ntp.sls.

To execute this SLS state file, we need to call the execution function state.apply or state.sls with

29



the name of the state file as an argument:

$ sudo salt vmx1 state.apply ntp
vmx1:
----------
          ID: ntp_peers_example
    Function: netconfig.managed
      Result: True
     Comment: Configuration changed!
     Started: 04:25:09.689908
    Duration: 1074.807 ms
     Changes:
              ----------
              diff:
                  [edit system ntp]
                  +    peer 10.10.10.1;
                  +    peer 10.10.10.2;
                  +    peer 10.10.10.3;
                  -    peer 172.16.0.1;
                  -    peer 172.16.0.2;
              loaded_config:

                  system {
                   replace:
                   ntp {
                     peer 10.10.10.1;
                     peer 10.10.10.2;
                     peer 10.10.10.3;
                   }
                  }

Summary for vmx1
------------
Succeeded: 1 (changed=1)
Failed:    0
------------
Total states run:     1
Total run time:   1.075 s

Note that in a single execution, the commands were generated in memory and deployed to a
network device. This example did not create a config file first.

The format of the output displayed in the previous example on the CLI is called highstate, but the
object returned is still a Python object (we can verify using --out=raw); hence, it can be reused and
define complex workflows.

Note the loaded_config key returned as we specified debug: true in the state SLS, having the
configuration generated as required by the business logic.

The execution time is quite fast here given all the steps performed: it retrieved the current

30



configuration, determined the difference, generated the configuration (all within the template), and
subsequently loaded the commands onto the device, generated a diff, and then committed the
configuration to memory on the device, all within 1.075 seconds.

We can also run the same exact state file, ntp.sls, against csr1. The state will process the same
template, which knows from the grains that csr1 is a Cisco IOS device and will generate the
appropriate configuration to be loaded on the device:

$ sudo salt csr1 state.apply ntp
csr1:
----------
          ID: ntp_peers_example
    Function: netconfig.managed
      Result: True
     Comment: Configuration changed!
     Started: 04:27:01.108327
    Duration: 3899.933 ms
     Changes:
              ----------
              diff:
                  -no ntp
                  +ntp peer 10.10.10.1
                  +ntp peer 10.10.10.2
                  +ntp peer 10.10.10.3
              loaded_config:

                  no ntp
                  ntp peer 10.10.10.1
                  ntp peer 10.10.10.2
                  ntp peer 10.10.10.3

Summary for csr1
------------
Succeeded: 1 (changed=1)
Failed:    0
------------
Total states run:     1
Total run time:   3.900 s

Using State dependencies

Another important feature you can leverage within state files is creating state dependencies.

When you need to apply several states that depend on each other, you will find state requisites very
helpful. For example, if you need the ntp_peers_example state to be executed only if another state
(such as bgp_neighbors_example) has been successfully executed, you only need to add two more
lines:

ntp_peers_example:

31

https://docs.saltstack.io/en/latest/ref/states/requisites.html


  netconfig.managed:
    - template_name: salt://ntp_template.j2
    - require:
      - bgp_neighbors_example

Generating network configuration files

We also have the ability to decouple the configuration generation and deployment into separate
steps—similar to what we showed in the Ansible section too. This is often helpful if you want to
version or view the commands before you try doing any deployments.

In order to accomplish this, we’ll use the file.managed state function. As arguments, we’ll specify the
template type and location of the template. Once the data is rendered in the template, we’ll save it
as ntp_generated.conf using the name key:

build_config:
  file.managed:
    - name: /home/ntc/ntp_generated.conf
    - source: salt://ntp_template.j2
    - template: jinja

If we saved this as build-ntp.sls, in /srv/salt, we could just build the configuration file using a
defined state as follows:

$ sudo salt vmx1 state.apply build-ntp
# output omitted

$ cat /home/ntc/ntp_generated.conf

system {
 replace:
 ntp {
   peer 10.10.10.1;
   peer 10.10.10.2;
   peer 10.10.10.3;
 }
}

Generating and deploying network configurations from files

Another option if you did want to build the config and deploy within a single workflow, but still
wanted to generate a config file on the server first, would be to have both of these states in the
same SLS file, as we do in Extending the State to deploy configuration file.

Example 8. Extending the State to deploy configuration file

generate_config:

32



  file.managed:
    - name: /home/ntc/ntp_generated.conf
    - source: salt://ntp_template.j2
    - template: jinja
ntp_peers_example:
  netconfig.managed:
    - template_name: /home/ntc/ntp_generated.conf
    - require:
      - file: /home/ntc/ntp_generated.conf

If we saved Extending the State to deploy configuration file as ntp-build-deploy.sls, and executed it,
we’d see the following output:

$ sudo salt vmx1 state.sls ntp-build-deploy
vmx1:
----------
          ID: generate_config
    Function: file.managed
        Name: /home/ntc/ntp_generated.conf
      Result: True
     Comment: File /home/ntc/ntp_generated.conf is in the correct state
     Started: 04:40:23.118581
    Duration: 26.408 ms
     Changes:
              ----------
              diff:
                  New file
              mode:
                  0644
----------
          ID: ntp_peers_example
    Function: netconfig.managed
      Result: True
     Comment: Already configured.
     Started: 04:40:23.145850
    Duration: 543.863 ms
     Changes:
              ----------
              diff:
                  [edit system ntp]
                  +    peer 10.10.10.1;
                  +    peer 10.10.10.2;
                  +    peer 10.10.10.3;
                  -    peer 172.16.0.1;
                  -    peer 172.16.0.2;

Summary for vmx1
------------
Succeeded: 2 (changed=2)

33



Failed:    0
------------
Total states run:     2
Total run time:   4.331 s

Parameterizing configuration filenames

In both previous examples when config files were generated, the filename used was
/home/ntc/ntp_generated.conf. This is not scalable, as the filename is static. To avoid hardcoding the
filename, but generate the name depending on the device or minion ID, we can specify this using
the id field from the opts SLS special variable:

generate_config:
  file.managed:
    - name: /home/ntc/{{ opts.id }}_ntp_generated.conf
    - source: salt://ntp_template.j2
    - template: jinja

The state above generates a file called home/ntc/vmx1_ntp_generate.conf for the vmx1 minion,
home/ntc/csr1_ntp_generate.conf for csr1, and so on.

Scheduling state execution

In Salt, it is very important to distinguish between jobs executed on the master, and jobs executed
on the minion. While the minions run execution functions, the master executes runners, covered in
the next paragraphs. This is significantly important when we are scheduling jobs: if we want to
schedule an execution function, we add the instructions in the (proxy) minion configuration file,
while we schedule a runner by adding the options in the master configuration file. In both cases,
the syntax is the same. For example, if we need to schedule the preceding state to be applied every
Monday at 11 a.m., we’d only need the following lines in the (proxy) minion configuration file:

schedule:
  ntp_state_weekly:
    function: state.sls
    args:
      - ntp
    kwargs:
      test: true
    ret: smtp
    when:
      - Monday 11:00am

Under kwargs we configured test: true, which means the state is going to execute a dry run, but it
will return the configuration difference. Moreover, we have subtly introduced another feature with
the field ret: smtp. This tells Salt to take the output of the state and forward it to the returner called
smtp. This returner takes the data from the output of the state and sends an email with the
configuration diff.

34

https://docs.saltproject.io/en/latest/ref/returners/all/salt.returners.smtp_return.html


Generating reports

Generating reports is even more useful when they are also consumed by a process or a human. For
this, the returners are very handy and easy to use. In the previous example, the NTP state is
executed, and then its output is processed via the SMTP returner—this is basically sending the
execution report as email.

To send the email with the content as-is, we only need to configure the following options on the
minion:

smtp.from: ping@mirceaulinic.net
smtp.to: jason@networktocode.com
smtp.host: localhost
smtp.subject: NTP state report
smtp.template: salt://ntp_state_report.j2

Where ntp_state_report.j2 is a template found under the /srv/templates directory, that customizes
the subject body as this:

NTP consistency check
---------------------

Running on {{ id }}, which is a {{ grains.vendor }} {{ grains.model }} device,
running {{ grains.os }} {{ grains.version }}:

{{ result }}

When the scheduler is executed, it will send an email with the following body:

NTP consistency check
---------------------

Running on vmx1, which is a Juniper VMX device,
running junos 18.2R1.9:

vmx1:
----------
          ID: ntp_peers_example
    Function: netconfig.managed
      Result: True
     Comment: Configuration discarded.

              Loaded config:

              system {
               replace:
               ntp {

35



                 peer 10.10.10.1;
                 peer 10.10.10.2;
                 peer 10.10.10.3;
               }
              }
     Started: 09:15:30.808802
    Duration: 563.741 ms
     Changes:

Summary for vmx1
------------
Succeeded: 1
Failed:    0
------------
Total states run:     1
Total run time: 563.741 ms

With this setup, we can ensure that Salt periodically executes the NTP state in test mode, then
generates and sends an email with the report.

From the CLI, we could achieve this by manually executing:

$ sudo salt vmx1 state.sls ntp test=True --return smtp

In a very similar way, we can set this up to send reports with the result from multiple devices at a
time, using a runner instead of an execution function. While the execution function is run by the
minion process, a runner function is executed by the master process, which gives visibility over the
entire network. In Python language, the result is a dictionary whose keys are the minion IDs
matched, while the values are the actual result of each device.

Available from both CLI and scheduled process, returners are a very powerful tool for post-
processing and data transformation. Later, we will see they can be reused when reacting to events,
or to monitor the entire Salt activity.

Executing Salt Functions Remotely
We’ve covered quite a bit thus far on Salt, but one of the most important components to understand
is the architecture employed by Salt for network devices. However, as you’ve learned a lot in this
section, be aware that Salt offers two primary ways you can interact with Salt, and execute any
command or tasks remotely from another machine.

Using the Salt API

This RESTful API is included with Salt, using the salt-api daemon, and can be used to perform any
operation you can when using the salt command-line programs within the Linux shell.

A core feature of the RESTful API is that it allows you to pick one of three web servers supported
out of the box. They include CherryPy, uWSGI, or Tornado.

36



The following is how you’d enable CherryPy by editing the master configuration file:

rest_cherrypy:
  port: 8001
  ssl_crt: /etc/nginx/ssl/my_certificate.pem
  ssl_key: /etc/nginx/ssl/my_key.key

This configures the server to listen on port 8001 and use the certificate and the key for secured
requests.

Afterward, you can start executing Salt functions remotely through the use of custom scripts,
Postman, or cURL. The following example shows the use of cURL to retrieve the ARP table for vmx1.

$ curl -sSk https://salt-master-ns-or-ip:8001/run \
    -H 'Content-type: application/json' \
    -d '[{
        "client": "local",
        "tgt": "vmx1",
        "fun": "net.arp",
        "username": "ntc",
        "password": "ntc123",
        "eauth": "pam"
    }]'

For configuration-related requests, the function, fun, is then replaced by state.sls or state.apply,
and the name of the state is specified in the args field:

$ curl -sSk https://salt-master-ns-or-ip:8001/run \
    -H 'Content-type: application/json' \
    -d '[{
        "client": "local",
        "tgt": "vmx1",
        "fun": "state.sls",
        "args": ["ntp"],
        "username": "ntc",
        "password": "ntc123",
        "eauth": "pam"
    }]'

This example, when executed, would run the NTP state that was defined earlier in the chapter.

NOTE

Another option for interacting with the Salt API is the salt-pepper Python library, in
which you can execute CLI commands from a personal machine, directly on the Salt
master server. Pepper comes with a command-line binary (pepper) that can be used
exactly like the master salt command. For example, we can execute NTP state from
our machine and it’ll run directly on the master:

37



$ pepper 'vmx1' state.sls ntp

Diving into Salt’s Event-Driven Infrastructure

Salt is built around an event bus, which is an open system, based on ZeroMQ, used to notify Salt and
other systems about operations. ZeroMQ is a cross-platform high-performance asynchronous
messaging toolkit that focuses on handling tasks very efficiently, without additional overheads.

To watch the events in real time, we execute the following command on the master:

$ sudo salt-run state.event pretty=True

If we looked at using a module with the salt command, we’d see that there are three individual
events that take place when the command is executed. For example, a command such as $ sudo
salt -G os:ios test.ping executes the following three events.

First, there is a Job ID, a way to uniquely reference any given event that is mapped to target
minions. The event is described, and shown as follows:

20220521092719071436    {
    "_stamp": "2022-05-21T09:27:19.071694",
    "minions": [
        "csr1"
    ]
}

Next, the job is executed on the appropriate minions. This event is described and shown as follows:

salt/job/20220521092719071436/new       {
    "_stamp": "2022-05-21T09:27:19.072185",
    "arg": [],
    "fun": "test.ping",
    "jid": "20220521092719071436",
    "minions": [
        "csr1"
    ],
    "missing": [],
    "tgt": "os:ios",
    "tgt_type": "grain",
    "user": "root"
}

The final event for this command is the response and status for each minion that was in the target
scope.

38



salt/job/20220521092719071436/ret/csr1  {
    "_stamp": "2022-05-21T09:27:19.130946",
    "cmd": "_return",
    "fun": "test.ping",
    "fun_args": [],
    "id": "csr1",
    "jid": "20220521092719071436",
    "retcode": 0,
    "return": true,
    "success": true
}

Note that in the final event there is a unique tag pattern for each minion. As you can see, the
preceding example is showing the tag of salt/job/20220521092719071436/ret/csr1.

Next, we’ll take a look at several items that have very specific meaning within Salt for event-driven
network automation.

Watching external processes with beacons

In Salt, beacons are used to watch external processes that are not related to Salt and to import and
return events onto the Salt bus.

For example, the inotify beacon is used to monitor when a file is changed. If we want to monitor
when the ntp_peers.sls file is updated, the lines in Beacons configuration in minion configuration
need to be added in the (proxy) minion configuration:

Example 9. Beacons configuration in minion configuration

beacons:
  inotify:
    - files:
        /srv/pillar/ntp_peers.sls:
          mask:
            - modify
      disable_during_state_run: True

NOTE
The inotify beacon only works on OSes that have inotify kernel support and
requires Pyinotify installed on the minion.

This instructs Salt to start monitoring the file /srv/pillar/ntp_peers.sls and push events onto the bus.
Modifying the contents, we will see events with the following structure:

salt/beacon/vmx1/inotify/srv/pillar/ntp_peers.sls {
    "_stamp": "2022-05-21T09:50:18.330556",
    "change": "IN_IGNORED",

39



    "id": "vmx1",
    "path": "/srvpillar/ntp_peers.sls"
}

This may be valuable for you to track data as it changes in the system. Since you can use modules
within pillars (as an example), the data is dynamic, often getting pulled from the devices in real
time. You’d be able to see this data change in real time using beacons.

Forwarding events with engines

Engines are another subsystem interfacing with the event bus. While beacons only listen to
external processes and transform them into Salt events, engines can be bidirectional. Although
their main scope is the forwarding of events, there are also engines able to inject messages on the
bus. And that is the main difference between beacons and engines: beacons poll the service at
specific intervals (default: 1 second), while the engines can fire and forward events on immediate
occurrence.

A very good application could be logging Salt events to a syslog server such as Logstash, using the
http-logstash engine. This would be defined on the master like so:

engines:
  - http_logstash:
      url: https://logstash.elastic.co/salt
      tags:
        - salt/job/*/new
        - salt/job/*/ret/*

The YAML configuration on the master configures the master to send events to Logstash. However,
it’s configured to send the events only matching the tags salt/job//new and salt/job//ret/*. For
reference, if tags is not configured or empty, the engine would forward all events.

Listening to the salt bus with reactors

The reactor system listens to the event bus and executes an action when an event occurs. The
reactors are configured on the master, the global syntax being:

reactor:
  # <tag match> describes the pattern to be matched against the event tag
  - 'salt/beacon/*/inotify//srv/pillar/ntp_peers.sls':
    # <list of SLS descriptors to execute>
    - salt://run_ntp_state_on_pillar_update.sls

This example instructs Salt to execute the run_ntp_state_on_pillar_update.sls data file when the
inotify beacon injects the corresponding event on the bus, on file update.

The reactor SLS, run_ntp_state_on_pillar_update.sls, can have any structure you’d like. For our
example, we’re using the configuration from Reactor SLS example.

40



Example 10. Reactor SLS example

run_ntp_state:
  local.state.sls:
    - tgt: {{ data['id'] }}
    - arg:
      - ntp
    - ret: mongo

This executes the execution function state.sls with the argument ntp against the minion whose ID
is extracted from the event body, under the field id.

The following events are what you’d see on the event bus.

salt/beacon/vmx1/inotify//srv/pillar/ntp_peers.sls {
    "_stamp": "2022-05-21T10:57:24.651644",
    "change": "IN_IGNORED",
    "id": "vmx1",
    "path": "/srv/pillar/ntp_peers.sls"
}
20220521105724736722  {
    "_stamp": "2022-05-21T10:57:24.737525",
    "minions": [
        "vmx1"
    ]
}
salt/job/20220521105724736722/new {
    "_stamp": "2022-05-21T10:57:24.737804",
    "arg": [
        "ntp"
    ],
    "fun": "state.sls",
    "jid": "20220521105724736722",
    "minions": [
        "vmx1"
    ],
    "tgt": "vmx1",
    "tgt_type": "glob",
    "user": "sudo_admin"
}
# followed also by the result of the state execution, omitted here due to size
# limits further output omitted

First, the pillar file, ntp_peers.sls, is changed, and it is fired by the inotify beacon; then, the reactor
kicks in and creates a new job and identifies the minions, then sends the task to the minions (only
vmx1 in this case).

41



Note the ret field in Reactor SLS example: the mongo returner is invoked, which means Salt will
forward the state results into MongoDB. This statement is optional and not required.

Suppose we have the pillar files maintained in Git. Configuring the local clone to track the remote
origin server, the previous example is an excellent orchestration example: a pull request merged
triggers automatic configuration deployment of the NTP peers for the entire network, without any
manual work. Note also the difference between configuration management only and event-driven
automation: beacon, reactor setup, and SLS—15 lines in total, and the results are sent into a
structured database service. Moreover, we maintain vendor-agnostic entities of data, not pseudo-
formatted files.

NOTE

The reactor has the limitation that we are able to trigger actions only to individual
events. Thorium is the next step: it is a complex system that can define business
logic based on aggregate data and multiple events.

You can do quite a lot with Salt without event-driven network automation. Our
recommendation is to first start using the salt command and start creating relevant
SLS data files in the form of pillars and templates. Once you’ve mastered the basics,
you’ll be ready to start exploring the event-driven capabilities of Salt and have a
much greater grasp on what it offers.

Extending Salt

As we hope we have emphasized in this section, every Salt component is pluggable. The extension
modules can be placed in a directory, with subdirectories for each of Salt’s module types, such as
modules, states, returners, output, and runners. The naming convention for subdirectories is to
prepend a  to the module type, so execution modules are defined under _modules, runners under
_runners, and output under _output. The parent directory can be specified with the option
extension_modules, or module_dirs—which accepts a list of paths. Alternatively, we can also include
it as one of the file_roots paths.

For example, a new execution module called example.py can be placed under /srv/salt/_modules:

def test():
    return {
      'network_programming_with_salt': True
    }

To make Salt aware of the new module, we need to resynchronize the modules using the
saltutil.sync_all execution function:

$ sudo salt vmx1 saltutil.sync_all
vmx1:
    ----------
    beacons:
    clouds:
    engines:
    executors:

42



    grains:
    log_handlers:
    matchers:
    modules:
        - modules.example
    output:
    proxymodules:
    renderers:
    returners:
    sdb:
    serializers:
    states:
    thorium:
    utils:

Here you can see modules.example, which is telling us that the new execution module example has
been synchronized, and is available to be invoked:

$ sudo salt vmx1 example.test
vmx1:
    ----------
    network_programming_with_salt:
        True

Remember, modules can be used from the CLI or directly within SLS files, such as templates:

{%- set successful = salt.example.test()['network_programming_with_salt'] -%}

Salt Summary

In this section, we covered some of the most important topics to be aware of when just getting
started with Salt for network automation. One of the greatest attributes of Salt that we covered was
the use of the SLS file. Remember, you have complete control of how to write SLS data files, from
using Jinja and YAML (as the defaults), to using Mako and HJSON, to adding in a new or custom
templating language or even data format. This allows you to maintain the use of Salt and extend its
capabilities according to the environmental requirements, without depending on the official
codebase. Another major benefit of Salt is the use of proxy minions. With Salt, you have a natively
built-in ability to distribute load between proxy minions that make it a great choice for large and
distributed networks.

43


	Untitled
	Automation Tools
	Reviewing Automation Tools
	Automating with Salt
	Executing Salt Functions Remotely


